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Introduction: 
 
 The Mega Million consists of six numbers that a player can choose from or a 
machine can select at random. For our analysis, we assumed that all numbers were 
randomly selected without any user bias. This was a reasonable assumption since the 
number of players that select numbers using the machine is larger compared to the 
number of users that select their own numbers. Our analysis was conducted on the 
lottery drawings ranging from January, 2015 to December, 2016. During this time 
period, the first five numbers ranged from 1 to 75, and the sixth number, otherwise 
known as the Mega Ball, ranged from 1 to 15. Choosing the correct number for the 
Mega Ball automatically makes the player a winner, regardless of how many of the 
numbers were correct overall. However, they can also win by getting at least three 
numbers correct, assuming they did not guess the Mega Ball right. Overall, there are a 
total of nine ways to win, making the sample space for winning: 
𝑊"#$,𝑊"#%,𝑊&#$,𝑊&#%,𝑊'#$, 𝑊'#%,𝑊(#$,𝑊$#$,𝑊%#$, where the first digit is the amount of 
correct numbers from the pool of 75 possible numbers and the second digit is whether 
the Mega Ball is correct or not.  

For each possible outcome in the sample space, there is a different prize that 
increases with the number of correct values. The prize can also vary due to the 
megaplier, which multiplies that prize by a factor of 2, 3, 4, or 5, if guessed correctly. 
Before applying the megaplier, the initial winning prizes are: Jackpot, $1,000,000, 
$5,000, $500, $50, $5 (for 𝑊'#%and 𝑊(#$). The cost for a regular Mega million ticket is 
$1 and for a Megaplier ticket is $2.  
 The probabilities of winning from 2015 to 2017 were determined using the 
hypergeometric distribution as followed:  
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Hypergeometric probabilities differ from binomial probabilities in that 
there is no replacement of a number as it is drawn. Since there is no replacement of a 
number once drawing the hypergeometric probability changes for the following number 
that will be drawn based on what was previously drawn. Unlike a binomial distribution 
where there is replacement, the probabilities remain constant for each drawing.    
 
1.1 Empirical versus Theoretical Probabilities 

In order for us to determine the empirical probabilities, we needed to determine 
the number of tickets sold for each drawings; since that information was not given we 
had to determine it from the theoretical probabilities listed above. This was done by 
finding the probability of winning any of the prizes (P(W)). Which was determined to be 
the sum of all the individual probabilities: 
P(W) = P(W5+1) + P(W5+0)+P(W4+1)+P(W4+0)+P(W3+1)+P(W3+0)+P(W2+1)+P(W2+0)+P(W1+1)+P(W1+0) 
 

𝑃(𝑊) 	=
1

14.71
 

Using this probability we were able to determine that there is approximately 1 
winner for every 14.71 lottery tickets purchased. This allowed us to estimate the number 
of tickets sold by multiplying this ratio by the number of winners.  

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	�𝑖𝑐𝑘𝑒𝑡𝑠	𝑠𝑜𝑙𝑑	 = 		𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑊𝑖𝑛𝑛𝑒𝑟𝑠	 ∗ 	14.71 
Our next step was determining whether this approximation was valid by 

comparing the empirical and theoretical probabilities of winning a particular prize. R-
Studio proved to be a useful tool in organizing these number of winners for a particular 
prize and calculating the probability for the respective prizes. This was done using the 
following formula: 

𝑃(𝑊%#$|𝑊) 	=
𝑃(𝑊%#$) ∩ 𝑃(𝑊)

𝑃(𝑊)
	=

𝑃(𝑊%#$)
𝑃(𝑊)

			  

This was done for each prize and each drawing, which we then calculated the 
Mean, the Standard Deviation, and the Coefficient of Variance. These values are listed  
below for P(W2+1|W), P(W1+1|W) and P(W0+1|W)  since others were too small to notice 
any variations. 

 

Probability Mean (𝝁) Standard Deviation (σ) Coefficient of Variance (δ) 

P(W2+1|W)         0.031 0.0026 0.085 

P(W1+1|W)         0.26 0.0088 0.034 

P(W0+1|W)         0.69 0.014 0.020 
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Table 1: Mean, standard deviation, and coefficient of variance of the actual probabilities 
𝑃(𝑊 (#$|𝑊), 𝑃(𝑊 $#$|𝑊), and 𝑃(𝑊 %#$|𝑊). 
  

The Theoretical probabilities were calculated by comparing the respective 
probability formulas for each prize to the empirical probability using the following 
histograms. The y-axis shows the distribution of the probabilities for a particular prize 
being won for each drawing, whereas the x-axis shows the probability of winning that 
particular prize conditioned on winning. Each histogram shows several area regions and 
the probability of the player winning each particular prize is greater the higher the 
density. Using these histograms along with R-Studio, the group was able to calculate 
the mean, standard deviation, and coefficients of variation which would be the empirical 
probabilities whereas the theoretical probabilities would be referred to the 
hypergeometric distributions shown below. It can be seen that the theoretical probability 
is very close to the actual probability which confirms that our estimation for the number 
of tickets sold is valid.  
 

 
  (a.)           (b.)     (c.)

Graph 1. Histogram showing the distribution for  (a.) 𝑃(𝑊 %#$|𝑊)=0.69, (b.) 𝑃(𝑊 $#$|𝑊)=0.26, and 
(c.) 𝑃(𝑊 (#$|𝑊)=0.031, where the x-axis is the probability of winning a specific criteria conditioned on 
winning and the y-axis is the density. Red vertical line represents the Theoretical probabilities, whiles the 
blue line represents the mean actual probabilities 
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1.2 Estimating Payout Amounts 
 The estimated payout was calculated by multiplying the normal winners by the 
prizes for each category and multiplying the Megaplier winners by the prizes won, then 
multiplying that by the megaplier number. Both of these payouts were added to the 
Jackpot payout, this provided us with the total payout per drawing. 
Equations used:  

𝑁𝑜𝑟𝑚𝑎𝑙	𝑃𝑎𝑦𝑜𝑢𝑡 $#$ 	= 	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑤𝑖𝑛𝑛𝑒𝑟	(𝑊$#$)	×𝑃𝑟𝑖𝑧𝑒(𝑊$#$) 
𝑀𝑒𝑔𝑎𝑝𝑙𝑖𝑒𝑟	𝑃𝑎𝑦𝑜𝑢𝑡	 = 	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑤𝑖𝑛𝑛�𝑟𝑠(𝑊$#$)×𝑃𝑟𝑖𝑧𝑒(𝑊$#$)×𝑀𝑒𝑔𝑎𝑝𝑙𝑖𝑒𝑟 

 𝑇𝑜𝑡𝑎𝑙	𝑃𝑎𝑦𝑜𝑢𝑡	 = 	𝑁𝑜𝑟𝑚𝑎𝑙	𝑃𝑎𝑦𝑜𝑢𝑡 + 𝑀𝑒𝑔𝑎𝑝𝑙𝑖𝑒𝑟	𝑃𝑎𝑦𝑜𝑢𝑡	 + 𝐽𝑎𝑐𝑘𝑝𝑜𝑡 
 
1.3 Number of Tickets Sold versus Jackpot Amount  
          The goal of this section is to analyze the relationship between the number of 
tickets sold and the Total Jackpot payout. Based on the linear regression plot in graph 
2, it can be seen that as the jackpot amount increases, so does the number of tickets 
sold. From the scatter plot we could see that the plots follow two distinct linear trends, 
so we perform regression analysis below 280 Million jackpot payout and above 280 
million. 

  
Graph 2: Scatter plot of Number of Ticket sold versus Jackpot Payout, where the x-axis is the Jackpot 
Payout (Millions USD) and the y-axis is the estimated Total Ticket sold (Millions). 
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 Using R-Studio to create different graphs, we were able to analyze the 
relationship between the ticket sales and the jackpot amount using four methods: 
residual versus fitted, normal Q-Q, scale-location, and residual versus leverage. Two 
sets were made for when the jackpot was less than and greater than the $280 million 
threshold. In most of these graphs we were able to determine the linearity and variance 
of the plot, which is important since it determines the dispersity of the data, whether it is 
the mean or median. If there is a high variance, then there is a lot of differences in the 
data. 
 

 
        (a.)    (b.)     (c.)         (d.) 

Graph 3: Analysis of (a.) Residuals versus Fitted, (b.) Normal Q-Q, (c.) Scale-Location, and (d.) 
Residual versus Leverage relating the number of tickets sold to Jackpot less than $280. 

 

 
        (a.)    (b.)     (c.)         (d.) 

Graph 4: Analysis of (a.) Residuals versus Fitted, (b.) Normal Q-Q, (c.) Scale-Location, and (d.) Residual 
versus Leverage relating the number of tickets sold to Jackpot when it is more than $280. 
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Residuals versus Fitted 
 The first method used was residual versus fitted, as shown on graphs 3a and 4a. 
The purpose of these graphs was to determine any non-linearity from the residual, or 
errors, by “fitting”, or predicting a linear model. According to graph 3a, when the Jackpot 
is less than 280, it is clear that the number of sold tickets becomes less predictable as 
the jackpot increases. For example, when the fitted values are less than 20, they are 
clustered as a negative correlation, but become more scattered as it moves along the x-
axis. Nonetheless, when the Jackpot is greater than 280, as seen in graph 4a, there are 
less values to draw any strong conclusions. However, they appear to be closer to a zero 
valued residual, compared to graph 3a, which may be due to the low value in data. If we 
analyze the graph 3a as a whole, it is noticeable that the range gradually increases in a 
blow horn shape. This means that the residuals, variance, errors, and even predictable 
values become larger, fitted values increase. 
 
Normal Q-Q 
 Following residual versus fitted graphs is normal Q-Q, which plots standard 
residuals as a function of theoretical quantities. The Q-Q plot, or quantile-quantile plot, 
allows us to compare the residual to that of a normal distribution graph. The standard 
residual can be determined by dividing the standard deviation, determined in table 1, 
from the residuals. Both graphs 3b and 4b, display a positive linear slope, indicating that 
the relationship between ticket sales and Jackpot amount follows a normal distribution. 
Using normal Q-Q, we can verify the mean value, and extreme high and low, where the 
mean is located in the center and the extremes on the edges.  
 
Scale-Location 
 Scale-Location can show the level of homoscedasticity, or equal variance, which 
indicates how far apart the numbers are spread from the mean. In addition, scale-
location allows us to see if the residuals are evenly spread. Focusing on graphs 3c and 
4c, we can see that both graphs are mainly increasing, which concludes that that there 
is a wide spread between residuals and there is an increase in variance. Overall, it 
confirms that the estimated ticket sales becomes less predictable as the Jackpot payout 
increases. 
 
Residuals versus Leverage 
 Residuals versus Leverage allows us to determine influential points. Although, 
not all outliers (particular points that fall far from the other data points) are influential in 
the linear regression analysis. For example, in Graph 2, we see that the the point at the 
very top right corner has a high value of x and is also very far for the many measured 
points; the displayed high leverage suggests an influence over the regression of this 
graph. High leverage points have a greater ability to skew the line, and so the slope of 
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the blue line is very different from the slope of the red line. The cause of this is 
due to the removal of this point which means the line wants to compensate for the loss 
of that particular point.   
 Not always will we find plots with a specific pattern. Based on our results, we 
found that when the number of tickets sold was less than $280 million, the “Residuals vs 
Leverage” graph was distinct from when the number of tickets sold was more than $280 
million. Based on graphs 3d and 4d, we can say that they were out of proportion to the 
jackpot payout relative to the trend of the other data points, because they have high 
Cook`s distance scores; this means that the cases are influential to the regression 
results.  

In graph 3a, we can identify influential cases because the point 149 is very far 
out of the red dashed line (Cook`s distance lines). From the scale used on the graph, 
the majority of the values are very close to each other and well within the boundaries of 
Cook`s distance. On the other hand, graph 4a has a case value that is right on Cook`s 
distance lines and another point that is outside of the cook`s boundaries. 
 
 
Conclusion  
 In completing this evaluation, we were able to apply our fundamental statistical 
analysis skills in a manner that produced a realistic representation of the Mega Million 
lottery. From our exploration, the group learned that there are different tools that can be 
used to assess data on a large scale. Regression analysis is a tool used to make other 
conclusions about data beyond the scope of the initial set we were given. The various 
findings based on the data that was analyzed suggest that statistical examination of 
data allows us to develop conclusive and reliable understandings about the behavior of 
the data set as a whole. We were able to conclude that our plot which depicts the 
Number of Tickets Sold as a function of Jackpot Payout did not follow a linear 
relationship since our residual plot followed a pattern that was not randomly distributed. 
This was possibly due to another variable that we did not take into account when 
making our regression model.   
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Index (Code) 
1. #This statement imports data from text file  
2. megamillion = read.table("megamillionupdate.txt", header=T)   
3. #Ratio of winners to population this will be used to estimate the number of tickets 

sold 
4. Ratio=14.71 
5. drawingwinners=matrix(NA,ncol=1,nrow=209) 
6. #This loops calculates the sum of all the winners per drawing 
7. for(i in 1:209){ 
8.  winnersum=0 
9.   for(j in 4:20){ 
10.     winnersum=winnersum+megamillion[i,j] 
11.   } 
12.   drawingwinners[i,]=winnersum 
13. } 
14. colnames(drawingwinners)<- "Sum of Drawing Winners" 
15. #The section below will calculate the number of tickets sold each drawing using 

the ratio of winners to population 
16. numticketssold=matrix(NA,ncol=2, nrow=209) 
17.  
18. for(i in 1:209){ 
19.   numticketssold[i,]=drawingwinners[i,]*Ratio 
20. } 
21. numticketssold[,2] <- numticketssold[,1]/1000000 
22. colnames(numticketssold) <- c("Number of Tickets Sold per Drawing","Number of 

TIckets Sold [Millions]") 
23. #Sum of winners per category  
24. megamillionwinners=matrix(NA,ncol=9,nrow=209) 
25. #This loop adds the winners for the W5+1 to the first coloum of the 

megamillionwinners table 
26.   megamillionwinners[,1]=megamillion[,4] 
27. #This loop calculates the sum of the normal megamillion and the magaplier and 

puts the results in the megamillion winners table 
28. for(i in 1:209){ 
29.   for(j in 2:9){ 
30.     megamillionwinners[i,j]=megamillion[i,j+3]+megamillion[i,j+11] 
31.   } 
32. } 
33. colnames(megamillionwinners)<- 

c("W5+1","W5+0","W4+1","W4+0","W3+1","W3+0","W2+1","W1+1","W0+1") 
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34. #Calculating the actual probabilities for each category 
35. EachPrizeProbability = matrix(NA, nrow = 209,ncol= 9 ) 
36.  
37. for(i in 1:209){ 
38.   for(j in 1:9){ 
39.     EachPrizeProbability[i,j] <- megamillionwinners[i,j]/drawingwinners[i] 
40.   } 
41. } 
42. colnames(EachPrizeProbability)<- 

c("W5+1","W5+0","W4+1","W4+0","W3+1","W3+0","W2+1","W1+1","W0+1") 
43. #Calculating the mean and Standard Deviation 
44. WinningStats=matrix(NA,nrow = 3, ncol = 3) 
45. WinningStats[1,1] <-mean(EachPrizeProbability[,7]) 
46. WinningStats[2,1] <-mean(EachPrizeProbability[,8]) 
47. WinningStats[3,1] <-mean(EachPrizeProbability[,9]) 
48. WinningStats[1,2] <- sd(EachPrizeProbability[,7]) 
49. WinningStats[2,2] <- sd(EachPrizeProbability[,8]) 
50. WinningStats[3,2] <- sd(EachPrizeProbability[,9]) 
51. rownames(WinningStats)<- c("W2+1","W1+1","W0+1") 
52. colnames(WinningStats) <- c("Mean","Standard Deviation","Coefficient of 

Variance") 
53. #Calculating Coefficient of Variance 
54. WinningStats[1,3] <- WinningStats[1,2]/WinningStats[1,1] 
55. WinningStats[2,3] <- WinningStats[2,2]/WinningStats[2,1] 
56. WinningStats[3,3] <- WinningStats[3,2]/WinningStats[3,1] 
57. ################################ 
58. #Computing the Theoretical values 
59. N=258890850 
60. Combinations <-c(1,14,350,4900,24150,338100,547400,4584475,12103014) 
61. SumCombinations = sum(Combinations) 
62. TheriticalProbabilities = matrix(NA,ncol = 9, nrow = 5) 
63. colnames(TheriticalProbabilities)<-

c("W5+1","W5+0","W4+1","W4+0","W3+1","W3+0","W2+1","W1+1","W0+1") 
64. for(i in 1:9){ 
65.   TheriticalProbabilities[1,i] <- (Combinations[i]/N)/(SumCombinations/N)  
66. } 
67. #Confidence 99% 
68. Confidence = matrix(NA,ncol = 2, nrow = 3) 
69. for(i in 7:9){ 
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70.   Confidence[(i-6),1] <- 
TheriticalProbabilities[1,i]+(TheriticalProbabilities[1,i]*0.495) 

71.   Confidence[(i-6),2] <- TheriticalProbabilities[1,i]-
(TheriticalProbabilities[1,i]*0.495) 

72. } 
73. #Plotting Histogram function  
74. par(mfrow=c(1,3)) 
75. hist(EachPrizeProbability[,9], probability = T, xlab = "Probability of Winning only 

MegaBall conditioned on winning", main = expression('Histogram of 
P(W'[0+1]*'|W) = 0.69'), col = "Gold") 

76. abline(v=TheriticalProbabilities[1,9], col = "Red") 
77. abline(v=WinningStats[3,1], col = "Blue") 
78. hist(EachPrizeProbability[,8], probability = T, xlab = "Probability of Winning one 

number and the MegaBall conditioned on winning", main = 
expression('Histogram of P(W'[1+1]*'|W) = 0.26'), col = "Gold") 

79. abline(v=TheriticalProbabilities[1,8], col = "Red") 
80. abline(v=WinningStats[2,1], col = "Blue") 
81. hist(EachPrizeProbability[,7], probability = T, xlab = "Probability of Winning two 

number and the MegaBall conditioned on winning", main = 
expression('Histogram of P(W'[2+1]*'|W) = 0.031'), col = "Gold") 

82. abline(v=TheriticalProbabilities[1,7], col = "Red") 
83. abline(v=WinningStats[1,1], col = "Blue") 
84. ################################################################

######## 
85. #Jackpot payout 
86. Payout = matrix(NA, nrow=209, ncol = 16) 
87. prizes = c(1000000,5000,500,50,5,5,1,1) 
88. ################################################################

######## 
89. #Payout for normal winners 
90. for(i in 1:209){ 
91.   for(j in 1:8){ 
92.     Payout[i,j] <- (prizes[j]*megamillion[i,(j+4)])     
93.   } 
94. } 
95. ################################################################

##### 
96. ################################################################

##### 
97. #Payout for Megaplier winners 



 
 
 
 
 
 

12 

98. #########################################################
############ 

99. for(i in 1:209){ 
100.   for(j in 1:8){ 
101.     Payout[i,(j+8)] <- (prizes[j]*megamillion[i,(j+12)])*megamillion[i,2] 
102.      
103.   } 
104. } 
105. colnames(Payout)<-

c("W5+0","W4+1","W4+0","W3+1","W3+0","W2+1","W1+1","W0+1","M5+0","M4+
1","M4+0","M3+1","M3+0","M2+1","M1+1","M0+1") 

106. #sum of payout 
107. PayoutSum = matrix(NA,nrow=209,ncol=3) 
108. for (i in 1:209) { 
109.   PayoutSum[i,1] = sum(Payout[i,]) 
110. } 
111. PayoutSum[,2] = PayoutSum[,1]/1000000 
112. PayoutSum[,3] = PayoutSum[,2]+ megamillion[,3] 
113. colnames(PayoutSum)<- c("Payout Sum","Payout without Jackpot", 

"Payout Sum [Millions]") 
114. ###########################################################

########## 
115. #Plot of NUmber of Tickets sold vs Jackpot 
116. x = PayoutSum[,3] 
117. y = numticketssold[,2] 
118. par(mfrow=c(1,1)) 
119. plot(x,y, xlab = "Jackpot Payout [Million $]", ylab = "Total Tickets sold 

[Millions]", pch = 20, col = "Black", main = "Total Tickets Sold vs. Jackpot 
Payout") 

120. Data = matrix(NA,nrow = 209, ncol = 2) 
121. Data[,1] = x 
122. Data[,2] = y 
123. #lower regression 
124. Data1 <- Data 
125. Data1 <- Data1[c(Data1[1]<=280),] 
126. Regression1 = lm(Data1[,2]~Data1[,1]) 
127. abline(Regression1, col = "Blue") 
128. #upper Regression 
129. Data2 <- Data 
130. sumRegression1 = summary(Regression1) 
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131. sumRegression2 = summary(Regression2) 
132. Data2 <- Data2[c(Data2[,1]>280),] 
133. Regression2 = lm(Data2[,2]~Data2[,1]) 
134. abline(Regression2, col = "Red") 
135. text(100,80,paste("Y =", round(Regression1$coefficients[2], digits = 2),"*X 

+",round(Regression1$coefficients[1],digits = 2))) 
136. text(100, 70,paste("R^2 =",round(sumRegression1$r.squared, digits = 2))) 
137. text(450,150,paste("Y =", round(Regression2$coefficients[2], digits = 

2),"*X +",round(Regression2$coefficients[1],digits = 2))) 
138. text(450, 140,paste("R^2 =",round(sumRegression2$r.squared, digits = 

2))) 
139. ######################################################### 
140. #Regression Analysis 
141. par(mfrow=c(2,4)) 
142. plot(Regression1, pch = 20, col = "Gold") 
143. plot(Regression2, pch = 20, col = "Gold") 


